Cambridge International Examinations Cambridge International General Certificate of Secondary Education | CANDIDATE
NAME | | | | | | | | |-------------------|--------|---------------------|-----------------------|--|--|--|--| | CENTRE
NUMBER | | CANDIDATE
NUMBER | | | | | | | CHEMISTRY | | | 0620/33 | | | | | | Paper 3 Theory | (Core) | Octo | October/November 2016 | | | | | Candidates answer on the Question Paper. No Additional Materials are required. ## **READ THESE INSTRUCTIONS FIRST** Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid. DO **NOT** WRITE IN ANY BARCODES. Answer all questions. Electronic calculators may be used. A copy of the Periodic Table is printed on page 16. You may lose marks if you do not show your working or if you do not use appropriate units. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate. CAMBRIDGE International Examinations 1 hour 15 minutes 1 The diagram shows part of the Periodic Table. | | | | | Н | | | | | | | | | |----|--|----|----|---|--|----|----|----|---|---|----|----| | Li | | | | | | | | С | N | 0 | F | Ne | | | | | | | | | | Si | | | Cl | Ar | | | | Ti | Cr | | | Cu | Zn | Ge | | | Br | Kr | | | | | | | | | | Sn | | | Ι | Xe | Answer the following questions using **only** the elements in the diagram. Each element may be used once, more than once or not at all. | (a) | Wh | ich element | |-----|-------|--| | | (i) | forms 21% of the air, | | | | [1] | | | (ii) | reacts with water to form a solution which turns litmus paper from red to blue, | | | | [1] | | (| (iii) | forms ions of type X^{3+} which when tested with aqueous sodium hydroxide produce a green precipitate, | | | | [1] | | (| (iv) | is a red-brown liquid at room temperature and pressure, | | | | [1] | | | (v) | is a noble gas with only three complete electron shells? |[1] **(b)** The table gives some information about the properties of four metals. | metal | density
in g/cm³ | relative
strength | resistance
to corrosion | relative electrical conductivity | melting
point/°C | |----------|---------------------|----------------------|----------------------------|----------------------------------|---------------------| | chromium | 7.2 | 8 | very good | 8 | 1857 | | copper | 8.9 | 30 | good | 60 | 1283 | | iron | 7.9 | 21 | poor | 10 | 1535 | | titanium | 4.5 | 23 | very good | 2 | 1660 | | Which one of these metals is most suitable for making the frame of an aircraft? Explain your answer using information from the table. | | |--|---------| | | | | | | | | | | | [3] | | [Tot | tal: 8] | | [100 | .ai. Oj | 2 A scientist analysed the substances present in a 1 dm³ sample of river water in an agricultural area. The table shows the mass of each ion dissolved in the 1 dm³ sample. | name of ion | formula of ion | mass/g | |-------------------|-------------------------------|--------| | calcium | Ca ²⁺ | 1.2 | | chloride | Cl- | 0.1 | | hydrogencarbonate | HCO ₃ - | 1.0 | | magnesium | Mg ²⁺ | 0.5 | | nitrate | NO ₃ - | 1.0 | | sodium | Na⁺ | | | | SO ₄ ²⁻ | 0.5 | | phosphate | PO ₄ ³⁻ | 1.2 | | | Total | 6.0 | | a) | (1) | which negative ion has the highest concentration, in g/dm ³ , in this sample of water? | | |----|-------|---|-----| | | | | [1] | | | (ii) | Give the name of the ion with the formula SO_4^{2-} . | | | | | | [1] | | | (iii) | Calculate the mass of sodium ions in 1 dm³ of this river water. | | | | | | [1] | | b) | Des | scribe a test for nitrate ions. | | | | test | t | | | | | | | | | resi | ult | | | | | e sample of river water also contains insoluble materials such as clay and the remains of ad animals and plants. | |-----|------|---| | | (i) | What method could be used to separate insoluble materials from river water? | | | | [1] | | (| (ii) | Some of the remains of dead animals and plants contain food materials. | | | | Which two of the following substances are constituents of food? Tick two boxes. | | | | alkane | | | | carbohydrate | | | | graphite | | | | protein | | | | [1] | | (i | iii) | Particles of clay suspended in river water show Brownian motion. | | | | Describe the movement of these particles. | | | | [1] | | (d) | Mos | st of the nitrate ions in river water come from fertilisers. | | | (i) | Explain why farmers use fertilisers. | | | | | | | | [2] | | (| (ii) | Ammonium nitrate is a fertiliser. | | , | , | Ammonium nitrate reacts with calcium hydroxide. | | | | ammonium nitrate + calcium hydroxide \rightarrow calcium nitrate + ammonia + water | | | | Explain why adding calcium hydroxide to the soil at the same time as nitrate fertilisers results in loss of nitrogen from the soil. | | | | [2] | | | | [Total: 13] | | | | [rotal. ro] | | 3 E | thanol ca | ın be manu | ifactured by | fermentation | and from ethene. | |-----|-----------|------------|--------------|--------------|------------------| |-----|-----------|------------|--------------|--------------|------------------| | (a) | Describe the manufacture | of ethanol | by fermentation | and from | ethene. | |-----|--------------------------|------------|-----------------|----------|---------| | | In your answer include | | | | | | | | | | ••••• | | | |------------|--------------------------------|---|------------------------------------|----------------------------------|------------------------------|--| ne table : | shows son | ne properties | of different alc | | | | | | shows son | ne properties | of different alcomelting point/°C | | relative
viscosity | | | | | | melting | ohols. | relative | | | n | alcohol | formula | melting
point/°C | ohols. boiling point/°C | relative
viscosity | | | n | alcohol | formula
CH ₄ O | melting
point/°C
–94 | ohols. boiling point/°C 65 | relative viscosity 0.54 | | | n | alcohol
nethanol
ethanol | formula CH ₄ O C ₂ H ₆ O | melting
point/°C
–94
–117 | ohols. boiling point/°C 65 79 | relative viscosity 0.54 1.08 | | (iii) Describe how the relative viscosity changes with the number of carbon atoms in the alcohol.[2][1] © UCLES 2016 0620/33/O/N/16 (ii) Predict the boiling point of pentanol. (c) (i) Draw the structure of ethanol. Show all of the atoms and all of the bonds. | (ii) | Give one major use of ethanol. | [2] | |------|---------------------------------------|------------| | | | [1] | | | דן | Total: 12] | 4 Jelly is a mixture of water and protein chains. (a) A crystal of blue dye was placed on top of some jelly. After 30 minutes some of the blue colour could be seen in the jelly. After 1 day the blue colour had spread out further into the jelly. Use the kinetic particle model of matter to explain these observations. ______[3] **(b)** The diagram shows the colour changes of the indicator bromocresol green at different pH values. Predict the colour of bromocresol green in pure water, in a strongly acidic solution. [2] (c) The concentration of an alkali can be found by titrating it with an acid using the apparatus shown. (i) State the names of the pieces of glassware labelled A and B. | A | | | |---|----|----| | В | | | | _ | [* | 21 | (ii) Describe how you would carry out a titration using the apparatus shown. |
 |
 | | |------|------|-------| | | | | | | | | | | | | | | | | |
 |
 |
 |
 |
 |
 | | | | | | | | | | | | | | | | | | |
 |
 | | |
 |
 | | | | | | | | | | | | | | | | | [2] | |
 |
 | 101 | | | | F - 1 | [Total: 10] 5 Lime (calcium oxide) is made by heating limestone (calcium carbonate). $$CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$$ (a) (i) Is this reaction exothermic or endothermic? Explain your answer. |
 | |------|--| [1 | | (ii) The reaction is reversible. (b) The diagram shows a furnace for making lime. - (i) On the diagram, write - the letter **C** to show where the waste gases exit the furnace, - the letter **L** to show where the lime is removed from the furnace. | ii) | Suggest a reason for adding coke (carbon) to the furnace. | | |-----|---|-----| | | | [4] | [2] **(c)** Explain why farmers use lime to treat acidic soils. | [2] | |-----| | [2] | | | | (d) | Limestone is used to manufacture cement. The limestone is mixed with clay and heated to | |-----|---| | | 1500 °C. It is then mixed with calcium sulfate and crushed. | | | | | 4.1 | | | 16.4 | | |---|-----|----------|------|------|-----|----------|-------| | 1 | П | Describe | tha | tact | tor | CILITATA | IONE | | J | u v | | เมเต | ισσι | 101 | Sullate | 10113 | | test |
 |
 | |--------|------|------| | | | | | result | | | | | | [2] | (ii) Concrete is a mixture of cement, silicates and water. Part of the structure of a silicate is shown. Deduce the formula for this silicate. | r | - 4 | | |---|-----|--| | | 17 | | | | 11 | | | | | | | (e) | | ncrete contains s
s can react with r | | | | | | |-----|-------|---|-----------------------|-----------------------|--------------------|------------------|---| | | (i) | Calcium hydrox | ide is strong | ly alkaline. | | | | | | | What is the mos | | | lkaline soluti | on? | | | | | pH | 12 | рН 6 | pH 7 | pH 12 | [1] | | | (ii) | The calcium hyo the air. | droxide on th | ne surface of | a piece of co | ncrete reacts w | rith carbon dioxide in | | | | Complete the ch | nemical equa | ation for this | reaction. | | | | | | | Ca(OH) ₂ + | $CO_2 \rightarrow C6$ | aCO ₃ + | | [1] | | (| (iii) | limewater in the | laboratory. | | • | | ft an open beaker of tate was observed. | | | | Use the informa | tion in (e)(i) | and (e)(ii) to | help you exp | plain these obse | ervations. | [3] | [Total: 15] | The F | Periodic Table is a method of classifying elements. | | |-------|--|-------| | (a) (| i) In what order are the elements arranged in the Periodic Table? | | | | | . [1] | | (i | i) How does the character of the elements change from left to right across a period? | | | | | . [1] | | (ii | i) Describe two trends in the properties of the elements going down Group I. | | | | | | | | | | | | | | | (b) ☐ | he halogens are a group of elements with diatomic molecules. | | | (| i) Chlorine reacts with an aqueous solution of sodium iodide. | | | | Cl_2 + 2NaI \rightarrow I $_2$ + 2NaC l | | | | What colour change would be observed in the solution? | | | | from to | . [2] | | (i | i) Astatine, At ₂ , is a halogen. | | | | Suggest why astatine does not react with aqueous potassium iodide. | | | | | . [1] | | (c) (| Chlorine reacts with hydrogen to form hydrogen chloride. | | | (| i) Complete the chemical equation for this reaction. | | | | Cl_2 +HC l | יסז | | | | [2] | (ii) Draw a diagram to show the electronic structure of a molecule of hydrogen chloride. Show only the outer shell electrons. 6 (iii) Hydrochloric acid reacts with lithium hydroxide. Complete the word equation for this reaction. | hydrochloric
acid + | + | hium
roxide | → | | + | | |------------------------|---|----------------|---|--|---|--| |------------------------|---|----------------|---|--|---|--| [2] [Total: 13] | phosphorus A vapour | liquid
phosphorus | B | solid
phosphorus | |---------------------|----------------------|---|---------------------| |---------------------|----------------------|---|---------------------| (a) Give the names of the changes of state labelled A and B. | | A | | |-----|---|----| | | В | | | | | [2 | | (b) | Describe the arrangement and motion of the particles in solid phosphorus. | | | | arrangement | | | | motion | | | | | C1 | (c) Is phosphorus(V) oxide an acidic oxide or basic oxide? Explain your answer. (d) Phosphorus sulfide is a covalent molecule. Predict two properties of phosphorus sulfide. |
 |
 | | |------|------|-----| | | | [2] | (e) Many metal ores contain sulfides. When zinc sulfide is heated in air the following reaction takes place. zinc sulfide + oxygen \rightarrow zinc oxide + sulfur dioxide Explain why this reaction may be harmful to the environment. [Total: 9] Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the line promised to a superior the produced for each series of examinations and is freely available to download at www.cie.org.uk after Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. The Periodic Table of Elements | | ■ | 2
He | helium
4 | 10 | Ne | neon
20 | 18 | Ā | argon
40 | 36 | 궃 | krypton
84 | 54 | Xe | xenon
131 | 98 | R | radon | | | | |-------|----|---------|---------------|---------------|--------------|------------------------------|----|----|------------------|----|---------|-----------------|----|----------|------------------|-------|-------------|-----------------|--------|-----------|--------------------| | | => | | | 6 | ш | fluorine
19 | 17 | Cl | chlorine
35.5 | 35 | Ā | bromine
80 | 53 | н | iodine
127 | 85 | At | astatine | | | | | | > | | | 8 | 0 | oxygen
16 | 16 | ഗ | sulfur
32 | 34 | Se | selenium
79 | 52 | <u>e</u> | tellurium
128 | 84 | Ро | polonium
- | 116 | | livermorium
- | | | > | | | 7 | z | nitrogen
14 | 15 | ₾ | phosphorus
31 | 33 | As | arsenic
75 | 51 | Sp | antimony
122 | 83 | Ξ | bismuth
209 | | | | | | ≥ | | | 9 | O | carbon
12 | 14 | Si | silicon
28 | 32 | Ge | germanium
73 | 50 | Sn | tin
119 | 82 | Pp | lead
207 | 114 | Fl | flerovium
- | | | ≡ | | | 2 | В | boron
11 | 13 | Ρl | aluminium
27 | 31 | Ga | gallium
70 | 49 | In | indium
115 | 81 | lT | thallium
204 | | | | | | | | | | | | | | | 30 | Zu | zinc
65 | 48 | <u>В</u> | cadmium
112 | 80 | Нg | mercury
201 | 112 | ე
ე | copemicium
- | | | | | | | | | | | | 59 | Cn | copper
64 | 47 | Ag | silver
108 | 62 | Au | pold
197 | 111 | Rg | roentgenium
- | | Group | | | | | | | | | | 28 | Z | nickel
59 | 46 | Pd | palladium
106 | 78 | 귙 | platinum
195 | 110 | Ds | darmstadtium
- | | G | | | | 1 | | | | | | 27 | ပိ | cobalt
59 | 45 | 뫈 | rhodium
103 | 77 | ٦ | iridium
192 | 109 | Ĭ | meitherium
- | | | | - I | hydrogen
1 | | | | | | | 26 | Pe | iron
56 | 44 | Ru | ruthenium
101 | 9/ | SO | osmium
190 | 108 | Ϋ́ | hassium
- | | | | | | | | | 1 | | | 25 | Mn | manganese
55 | 43 | ပ | technetium
- | 75 | Re | rhenium
186 | 107 | Bh | bohrium
– | | | | | | _ | loq | lass | | | | 24 | ပ် | chromium
52 | 42 | Mo | molybdenum
96 | 74 | ≥ | tungsten
184 | 106 | Sg | seaborgium
- | | | | | Key | atomic number | atomic symbo | name
relative atomic mass | | | | 23 | > | vanadium
51 | 41 | g | niobium
93 | 73 | <u>а</u> | tantalum
181 | 105 | Ор | dubnium
– | | | | | | | atc | | | | | 22 | F | titanium
48 | 40 | Zr | zirconium
91 | 72 | Ξ | hafnium
178 | 104 | 꿆 | rutherfordium
- | | | | | | | | | | | | 21 | လွ | scandium
45 | 39 | > | yttrium
89 | 57–71 | lanthanoids | | 89–103 | actinoids | | | | = | | | 4 | Be | beryllium
9 | 12 | Mg | magnesium
24 | 20 | Ca | calcium
40 | 38 | S | strontium
88 | 26 | Ba | barium
137 | 88 | Ra | radium | | | _ | | | က | = | lithium
7 | 1 | Na | sodium
23 | 19 | \prec | potassium
39 | 37 | SP
Pp | rubidium
85 | 55 | CS | caesium
133 | 87 | ᅩ | francium
- | | 71
Lu | lutetium
175 | 103 | ۲ | lawrencium | I | |-----------------|---------------------|-----|-----------|--------------|-----| | v A
Vp | ytterbium
173 | 102 | Š | nobelium | I | | 69
Tm | thulium
169 | 101 | Md | mendelevium | ı | | 89
П | erbium
167 | 100 | Fm | fermium | I | | 67
Ho | holmium
165 | 66 | Es | einsteinium | I | | 66
Dy | dysprosium
163 | 86 | ర్ | californium | I | | 65
Tb | terbium
159 | 26 | 益 | berkelium | I | | 64
Gd | gadolinium
157 | 96 | Cm | curium | I | | 63
Eu | europium
152 | 92 | Am | americium | I | | 62
Sm | samarium
150 | 94 | Pu | plutonium | I | | e1
Pm | promethium
- | 93 | Δ | neptunium | I | | 9 P N | neodymium
144 | 92 | \supset | uranium | 238 | | 59
P | praseodymium
141 | 91 | Ра | protactinium | 231 | | Se
Ce | cerium
140 | 06 | Т | thorium | 232 | | 57
La | lanthanum
139 | 88 | Ac | actinium | ı | lanthanoids actinoids The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).